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ABSTRACT 

An analytical study is presented of the laminar 
and turbulent flow fields that result from natural 
convection created by cooled or heated arrays of 
tubular elements immersed in water. The study is 
concerned in particular with the methods used to 
create turbulence in the NORDA high-frequency sound 
scattering facility and many numerical results are 
given that pertain to that application. The report 
discusses the initially laminar thermal plume that 
rises from a line source of heat in water, the 
instability of this plume, the eventual turbulent 
form of the plume, plume-plume interactions, and the 
swaying of thermal plumes. An appendix gives a 
chronological bibliography of works on natural 
convection that may be pertinent to understanding 
of turbulent flows created in situations analogous 
to the NORDA high-frequency scattering facility. 
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I- INIRODUQIiON 

The tasks required in the subject contract arez 

(1) Develop a predictive model -for the principal features 
of the sound speed fluctuations and flow fields that 
result from cooled or heated arrays of tubular elements 
immersed in water. 

(2) Apply the model to the NORDA high frequency scattering 
facility. 

<3)  Document (1) and (2) in sufficient detail to permit 
NORDA personnel to incorporate the results into their 
research on high frequency propagation. 

The NORDA high frequency scattering facility has been described 

by Levenson and Posey C13 and by Posey and Levenson C2,3] in three 

papers presented at recent meetings of the Acoustical Society of 

America.  A fourth paper by Posey, Levenson, Branch, and Carver C43 

discussed the thermal microstructure measurement system (TMMS) 

that is used in this facility.  The water tank in this facility 

<see Fig. 1) is 14 m long by 3.7 m wide by 3.7 m deep.  In typical 

experiments a 1.5-MHz cw acoustic signal is propagated over a 

10 m horizontal path within the tank.  A principal objective has 

been to study the effects of random sound speed fields on 

high-frequency propagation.  To attain the desired random sound 

fields the NORDA experimenters have either cooled the water near 

the tank's top or heated the water near the tank's bottom. 

In either case natural convection was being used to create an 

inhomogeneous temperature field within the water. 

A basic theory that the water tank experiments should test 

is   that   devised   by   Wenzel    C5II.      The   simplest   version   of   this 

theory requires ideally that the thermal fluctuations along and 

near the propagation path have statistical properties of a 
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Figure 1.   Sketch o-f a typical experimental con-figuration used 

for the study o-f the propagation o-f high -frequency 

sound through turbulence in the NORDA water tank 

facility. 



homogeneous stationary random process.  Also, the test of the 

theory would be easier to make if there is no preferred direction 

(isotropic turbulence) in the statistical properties of this 

field.  In such cases there are two important parameters that 

2 
enter into Wenzels theory.  One of these is the ratio v  of the 

mean squared deviation of the sound speed c from its average 

value c  to the square of the average sound speed.  The other 
o 

parameter is the correlation length *, defined such that the 

product ftc*" is the line integral over separation distance 
o 

(from zero to infinity) of the spatial autocorrelation function 

of the sound speed deviation.  Wenzel assumes that this 

correlation length ft   is large compared with either l/^^^ or 

(d/k )^^^,   where k  (equal to 2iTf/c ) is the acoustic 
o o o 

wavenumber and d is the propagation distance. 

A principal prediction of Wenzel's theory is the phenomenon 

of saturati^gn, whereby the second moment of the incoherent 

part of the acoustic signal asymptotically varies with propagation 

distance in accord with energy conservation notions.  The order 

of magnitude of the propagation distances that characterize the 

transition to the saturation region is of the order of 

(v^k'^ft)  .  Consequently, the situation in the corresponding 
o 

NORDA water tank experiments should ideally be such that 

the length d of the propagation path is comparable to or 

2 *?  —1 
larger than (v k^'ft)  .  With the speed of sound in water 

o 

taken as 1500 m/s, with the acoustic frequency taken as 1.5-MHz, 

an d with the propagation distance d taken as 10 m, the acoustic 

wavenumber k  is 6300 m  , its reciprocal 1/k  is 0.16 mm, 
o o 



1/2 
while (d/k )    is 0.04 m.  Consequently, one desires that 

the correlation length ft   be much larger than 0.04 m and that the 

7 2 
product V it   be at least as large as l/(k d) , the latter 

-9 
being 2.5x10   m. 

The experiments reported by Posey and Levenson have confirmed 

Wenzel's theory in most particulars, but up to now the "strength" 

of the turbulence has not been sufficient for observation of the 

saturation phenomenon.  Consequently, the present author has 

undertaken to broadly study the principles that govern the generation 

of this turbulence. 

II.  BgUSSINEBQ EQUAIiONS FOR NAIURAL CONVECIION 

Although the intended application is to acoustics, the 

subject matter of this study is natural convection in an 

enclosed water tank, either heated from below or cooled from 

above.  There is an extensive literature on this subject, 

much of which pertains indirectly to the tasks of the research 

described in this report.  Consequently, a bibliography is 

included here as Appendix A. 

The usual equations taken as a starting point in natural 

convection studies are the Boussinesq equations, which constitute 

an approximation to the general fluid dynamic equations.  A 

modern derivation with extensive references to alternative 

derivations is given by Gray and Siorgini £hl. 



The general form of the Boussinesq equations adopted in the 

present study is as follows: 

y-v  =  0 (la) 

pDv/Dt     =        -Vp*     +     u   V  V     +     gfijoe  e^ (lb) 

PC   De/Dt     = K   V^e (Ic) 
P 

where v is the fluid velocity, p is the ambient density, u is the 

viscosity, 6 is the deviation of the temperature from its ambient 

value, g is the acceleration due to gravity, e  is the unit vector 

in the vertical direction, P is the coefficient of thermal 

expansion, c  is the specific heat at constant pressure, and K 

is the thermal conductivity.  The reduced pressure p* is the 

actual pressure p plus >3g Az, where height Az is measured 

relative to any convenient reference height.  The operator D/Dt is 

a/at + si'v.      For simplicity, p, u, g, P, c , and K are  regarded 

as constant. 

III.   DIMENSIQNLESB GROyPS 

There a.r&  two general fundamental models that can be taken 

as a starting point in the analysis of natural convection 

phenomena that occur in the NORDA water tank: 

(1)  HQCLZQDt^L cyl.i.rider models  A long horizontal 

cylinder immersed in water has a different temperature 



than the surrounding water.  In the first stage of the 

analysis the water environment is regarded as unbounded. 

(2)  Line source modeii  The source (or sink) of heat 

is not explicitly described but is regarded as extending 

along a horizontal line (analogous to the cylinder axis 

in the horizontal cylinder model).  The source is charac- 

terized by the amount of heat that is being added to the 

fluid per unit length of line.  If the fluid is being 

cooled then the source is actually a heat sink and the 

amount of heat being added per unit length is a negative 

number.  Here also, in the first stage of the analysis, 

the fluid is regarded as unbounded. 

The horizontal cylinder model is more specific than the line 

source model and is pertinent to the present study because the 

devices that have previously been used to heat or cool the NORDA 

tank have consisted of either (i) electrically conducting copper 

rods bent into zig-zag configurations, (ii) a sequence of parallel 

cylindrical probes, each mounted perpendicular to a long bus that 

conducts electrical current to the probes, or (iii) cylindrical tubes 

carrying liquid nitrogen, the tubes being coiled into a horizontal 

configuration resembling a string of continuous zeroes.  Near the 

surfaces of the rods or tubes at distances somewhat shorter than 

any length scale characterizing the zig-zags or coils, one would 

expect the hozizontal cylinder model to be more appropriate. 

At radial distances from a horizontal cylinder that are large 

compared with the cylinder's radius R one would expect to get 

results fully equivalent to those predicted by a line source 

model, provided one makes an appropriate identification for the 



heat generated per unit length by the cylinder.  The line source 

model, moreover, may be an appropriate idealization for a heating 

element configuration as a whole, provided one limits predictions 

to distances somewhat greater than the element width and provided 

the element is substantially longer than it is wide. 

In the most recent experiments reported by Posey and Levenson 

C3], the heating was caused by the situation <ii) above, each probe 

being 14 inch (35.6 cm) long with a net power loss per probe of 1210 

watt.  There were two intermeshed staggered rows of probes, 36 probes 

on each row, the probes being 11 inch or 27.9 cm apart, 72 probes 

in all extending over a net distance of 10 m.  Thus in the region 

local to any one particular probe one might use a line source model 

with energy input of 3400 watts/m.  Alternatively at great distances 

above the heating element it might be appropriate to make estimates 

using a line source model with energy input of 8700 watts/m. 

In either case, horizontal cylinder or line source, one can 

regard the convection phenomena governed by the Boussinesq 

equations (1) and the corresponding boundary conditions as being 

described in terms of dimensionless quantities. 

Hgrizgntal Qyl^inder Models ' " 

If the source of convection is a horizontal cylinder of 

radius R whose temperature is e  degrees greater (or lesser if 

®C ^^ negative) than ambient, the Boussinesq equations are readily . 

cast in a dimensionless form.  Velocities are expressed in units 

of u/pR, distances in units of R, time in units of joR^/u, 9 in 

units of e^,, and p* in units of u^/pRt  In this formulation 

only two distinct similitude parameters appear; these can be       = 



taken as the Qrasho-f numbar Br and th» Prandtl nuMbar Pr, 

defined as 

Sr - g0 (2R)"iej,|/<|i/p) (2a) 

Pr  «  u c /K <2b) 
P 

A convenient derivsd dimvnsionlvss group i« th« Rayleigh number, 

defined as 

Ra  -  Br'Pr <2c) 

It is undoubtedly appropriate to have some estimates of the 

orders of magnitudes of th«sa parameters at tb« outset.  Talcing 

values for Mater appropriate to 20  C, one has 

g   -  9.8m/,2 

a 1.002xl0"^ kg/m's 

3 
p       ~       998.2 kg/m 

c   =  4181.6 J/kg'K 
P 

K   =   0.597 W/m*K 

and from these values one calculates 

Br  =  161.1 ER in cm3 C^j, in °C3 <3a) 

D-  =  -7 A«> (3b) 

Ra  =  1131 CR in cmJ^Cej, in °C3 <3c) 

8 



Thus, with representative values of R = i cm and  e  = 20° C, 

one has ^ ' <— 

Br 2£  3220 (4a) 

Ra 2£  2.26xlo 4 <4b) 

Line Source Model 

The problem of natural convection from a line source has 

associated with it a characteristic length L ^, a characteristic 
ch 

time t  , and a characteristic temperature increment © . , 

these being given by 

ch 

PC 
P 

gio 

-,1/3 

(5a) 

"ch 

jOC 
^2/3 
P 

g»Q 
(5b) 

ch 

Q 

uc (5c) 

Here Q is the heat added per unit time and per unit length of 

line source, u   is the viscosity, and &   is the coefficient of 

volume expansion (increase in volume per unit volume and per unit 

temperature increase at constant pressure). 

From the above basic characteristic quantities one can 

identify a characteristic velocity v ^ and a characteristic 
ch 

pressure increment P*. , these being given by 



ch 

gpQ 

/M=_ 
P. 

1/3 

ch  ch 
(6a> 

PJh  = "" 

gPQ 2/3 

=  pv^^  =  U/t^^ (6b) 

With Q taken as 3400 watts/meter (appropriate for near a 

single probe), and with g, P, c , u, and p  taken as 

enumerated following Eq. (2c), one finds 

L .  =  0.0394 cm 
ch 

t ^  =  O.154 
ch 

e ^  =  8.11x10 
ch 

2 
K 

V ,  =  0.255 cm/s 
ch 

p»   =  0.00648 Pa 
^ch 

Alternatively, with Q taken as 8700 watts/m (appropriate for using 

the line source model in the description of the flow far above the 

heating array, one has 

L .   =  0.0288 cm 
ch 

t ^  =  O.OB3 s 
ch 

e ^  =  2.08x10^  K 
ch 

V .  =  0.348 cm/s 
ch 

p*^  =  0.0121 Pa 
■^ch 

The only distinct dimension!ess group that can be associated 

with the line source model is the Prandtl number Pr = Uc^/K. 

There is no intrinsic Grashof number associated with the model; 

the literature C?] does, however, use a coordinate dependent 

Grashof number.  Thus, if x denotes distance above the line source. 

10 



3 
one could speak of a Brashof number equal to (x/L  ) , or 

-7   ^ 

X gB/> Q 
(Gr)   = — (7) 

X 3 
C  11 
P 

=  1.63x10^ Cx in cmD"^   if Q=3400 W/m 

=  4.18x10^ Cx in cm3'^   if Q=8700 W/m 

Note that Eq.(7) corresponds to Eq. (2a) if 2R is replaced by x, 

and if 9„ is replaced by Q/uc . 
L, p 

IV.  BOUNDARY LAYER NEAR A HQRIZONIAL CYLINDER 

Much of the recent literature C8, 9, 10, for example] on 

natural convection caused by horizontal cylinders has concentrated on 

direct numerical integration of the partial differential equations 

(1).  Unfortunately, the results are   all for air (Pr2:0.7) and 

Are   oriented toward heat transfer predictions, so an extrapolation 

to results applicable for the NORDA experiments is not a priori 

evident.  However, a good approximate theory can be extracted from 

a boundary layer model proposed in a seldom cited sequence of 

papers by Merk and Prins C113.  One adopts in the 

vicinity of the cylinder a quasi-cartesian coordinate system 

(see Fig. 2) such that x = R  and y = r—R and lets u and v 

be the x and y "components" of the fluid velocity.  The flow 

is assumed steady and laminar and confined (for * between O and, 

say, 0.7w) to the immediate vicinity of the cylinder.  With 

11 



Figure 2.   Boundary layer model suggested by Merk and Prins for 

the analysis of convective flow around a horizontal 

cylinder at a different temperature than the surrounding 

fluid. 

12 



various plausible assumptions the Boussinesq equations reduce 

to the boundary layer equations 

^u/^v.      +     »v/3y  =  O (8a> 

2    2 
uau/&x  +  v»u/»y  =   v» u/Sy  +  96^ sin 0       (Sb) 

u»e/3x  +  vSe/Sy  =  (v/Pr)»^e/»y'^ (Be) 

with boundary conditions u=0 at x=0; u=0, v=0, 0=9„ at y = O; 

and u -^ O, 9 -► O as y -► <».  Here v=y//j is the kinematic 

-6  2 
viscosity, which has a value of approximately 10   m /s -for water. 

If u and 6 are  assumed to vanish outside a boundary layer 

of thickness 6, varying with x, then the boundary layer equations 

above yield the integral relations 

6 

l^- (d/dx)  I     u""  dy     =     -   vOu/Sy)      +     g3  sin   «s |     6  dy (9a) 

* o 

6 

(d/dx)   I    u   e  dy     =     -   (v/Pr) Oe/»y> (9b) 

'o 

Merk and Prins suggest that one assume at the outset that 

u and 9 vary with y within the boundary layer as 

13 



u  =  F(x)(y/6)C1 - <y/6)3^ (10a) 

e   = e^Ll   -   (y/6)l^ (10b) 

where F(x) and (5(x) are to be determined from Eqs. (9).  Then 

the substitutions 

r   1440f''^ 
^     =     R     P~"R~ •=!   +   (2/M)r'^   «(*) (11a) 

60vCBr/Pr3^''^ 

R   C1440(l   +   2/M)] 

where  * = x/R,  M = (7/4)Pr, yield the coupled ordinary differential 

equations 

a"^* dW/d*  =  CM+2]a^sin *     -      CM+13* (12a) 

2 2 
* a da/d«i  =  -CM+23a sin H     +      CM+23* (12b) 

Subsequent introduction of a function ♦(*), such that 

a  =  l/(d*/d0) (13a) 

W  =  ♦d*/d* (13b) 

reduces the above system to just one differential equation 

14 



♦^♦'♦''  =  (M+2)Csin «f  -  ♦(♦')'^3 (14) 

with boundary conditions ♦ = O and ♦' = 1 at 0=0. 

The integration o-f the above equation, although not trivial, 

can be effected with the aid of a digital computer.  Results are 

listed in Table 1 for a Prandtl number of 7-0.  Insertion 

of the representative numbers cited earlier in the present 

report into Eqs. (11) yields 

6/R i  0.52« (15a) 

F  i  C3.15x10 ^ m/sl* (15b) 

The peak value of u in the boundary layer, according to Eq. (10a), 

is (4/27)F, so since W increases to a value of the order of 1.5, 

the peak velocity in the vicinity of the cylinder is of the order 

-4 
of 7:<10   m/s.  The boundary layer separation point should be 

roughly where 'S  attains its maximum value, so one should not 

attach too much significance to the listings in the table 

for values of ♦ greater than 130 . 

15 



180(|)/TT .     $((J).) a((}>) ¥(4)) 

0.0 000.0 0.00000 1.00000 0.00000 
0.1 5.7 0.09998 1.00048 0.09994 
0.2 11.5 0.19987 1.00192 0.19949 
0.3 17.2 0.29957 1.00502 0.29808 
0.4 22.9 0.39898 1.00781 0.39589 
0.5 28.6 0.49800 1.01217 0.49201 
0.6 34.3 0.59654 1.01763 0.58620 
0.7 40.1 0.69450 1.02418 0.67810 
0.8 45.8 0.79178 1.03187 0.76733 
0.9 51.6 0.88829 1.04075 0.85351 
1.0 57.3 0.98392 1.05089 0.93627 
1.1 63.0 1.07857 1.06238 1.01524 
1.2 68. 8 1.17214 1.07533 1.09003 
1.3 74.5 1.26453 1.08984 1.16028 
1.4 80.2 1.35562 1.10608 1.22561 
1.5 85.9 1.44531 1.12421 1.28563 
1.6 91.7 1.53348 1.14443 1.33995 
1. 7 97.4 1.62003 1.16701 1.38819 
1.8 103.1 1.70482 1.19224 1.42993 
1.9 108.9 1.78774 1.22053 1.46473 
2.0 114.6 1.86864 1.25233 1.49213 
2.1 120.3 1.94739 1.28827 1.51163 
2.2 126.1 2.02383 1.32913 1.52267 
2.3 131.8 2.09781 1.37596 1.52461 
2.4 137.5 2.16912 1.43018 1.51668 
2.5 143.2 2.23757 1.49376 1.49795 
2.6 149.0 2.30293 1.56956 1.46724 
2.7 154.7 2.36490 1.66195 1.42297 
2. 8 160.4 2.42314 1.77791 1.36291 
2.9 166.2 2.47722 1.92967 1.28375 
3.0 171.9 2.52656 2.14101 1.18008 
3.1 177.6 2.57029 2.46677 1.04196 

Table 1. Tabulation of dimensionless boundary layer paramet 

for natural convection around a horizontal cylinder at 

a different temperature than the surrounding fluid. 

Calculation is for a Prandtl number of 7,0  Here ** is 

angle in radians, iaO*/iT is angle in degrees, ♦ (*) 

is the solution of the nonlinear differential equation, 

«(*) corresponds to boundary layer thickness, *(*) 

corresponds to the poeak tangential fluid velocity in 

the boundary layer. 

16 



Analogous results can be extracted from the relations 

Cderived from Eqs. (10)3 

/ u dy  =  (1/12) F6 ;     /  u e dy  =  (l/30> &f-F6 

I \^   dy  =  <1/105) F^6 (16) 

concerning the rates at which mass, thermal energy, and 

momentum are being transported in the thermal plume. 

V.  LAMINAR FLOW IN JHERMAL PLLJME 

When the fluid is locally heated, a thermal plume rises 

from the heated region because of natural convection; if it 

is locally cooled, then the thermal plume descends. In what 

follows, the terminology refers to a rising plume but in 

actuality the analysis is equally applicable to a descending 

p1ume. 

The thermal plume rising from a heated horizontal cylinder 

or a line source may be laminar for some distance above the 

source but must eventually become instable.  There is 

possibly some intermediate range of heights (see Fig. 3) where 

the flow profile has a characteristic shape such that the vertical 

velocity u depends on horizontal distance y from the plume's 

center according to a relation of the generic form 

17 



Figure 3.   Sketch of thermal plume and coordinates used in 

the development of a similarity solution. 

18 



u = U(z) F(y/L ) '   "   ->     (17) 
y 

where F(1a) is some characteristic function, independent of height, 

which can be normalized such that F(0) = 1.  The quantities LJ(z) 

and L (z), representing peak vertical velocity in the plume and the 

plume's half width, will, however, vary with height z.  The 

premise is that, given appropriate choices for U(z) and L (z), 

the same function F(V^) applies for each height z in this range. 

Similarly, one can postulate that 

V = V(z) G(y/L ) (IBa) 
y 

e = T(z) H(y/L > (18b) 
y    ■..,....-    ..-._-■..■   ;■ 

for the transverse velocity and the temperature deviation. 

Moreover, it seems plausible that the plume is still fairly thin 

in this height range, so boundary layer equations analogous to 

Eqs. <S) can be used, i.e. - 

au/&2  +  3v/3y  =  O -        (t9a) 

2    2 uau/az  + w^u/^y/     =  v » u/»y   +  gft e    • (t9b) 

u&©/»z  +  v»e/»y  =  (v/Pr)»^e/&y^   . (19c) 

19 



with the boundary conditions 

&u/ay = O;      »e/ay =0;       v = 0;    at y = 0    (20a) 

u -► O; e -♦ O;      as y -► CO (20b) 

A corollary of the above boundary layer equations and boundary 

conditions is that 

w 

(d/dz) / u e dy   =  O (21) 

so the functions U(z), T(z), and L (z) that appear in Eqs. (17) 

and (18) must satisfy the requirement 

U T Ly   =  K (22) 

where K is a constant independent of z. 

It is readily demonstrated that the assumptions (17) and 

(18) are consistent with the boundary layer equations and the 

constraint (22) only if L  is proportional to (z-z )^^^^   while 

U .-nust be proportional to (z-z ) ^^,   V must be proportional 

to <z-z )    , and T must be proportional to (z-z )~'^'^^. Here 

ZQ is some constant and may be negative.  Without loss of 

generality one can take these proportionality constants to be 

such that 
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U  =  :(gBK)^''^/v^^^3 (z-z^)^^^ (23a) 

V  = {qm)^^^\f^^^   (z-z^)~^^^ "  "  (23b) 

^.4/5 -2/5, . -1/5,     -3/5 ,„, , 
T  =  K   V    (g0)    (z-z ) (2oc) 

1        3/5, ....-1/5 ,    V 2/5 /o-jK L   =  V   (g8K)      (z-z ) (2^d) 
y                   D 

Here the constant K must be such that 

/ u e dy  =   K / 

O D 

e dy  =   K ; F(1r») H(ln) dX\ (24) 

D 

the left side being presumed to be known at the outset. 

The mass conservation equation is satisfied if one introduces 

a function ♦ and sets 

F  =  dt/drj  =  ♦' (25a) 

G  =  (2/5) Yi*'  -  (3/5) ♦ (25b) 

The remaining two boundary layer equations then yield 

H  =  (1/5) (t')"^  - (3/5)* ♦'' -  ♦''' ' (26a) 

-(3/5)(iH)'  =  (l/Pr)H'' (26b) 

Since F=l, B=0, and H'=0 at tv=0, one has +=0 and ♦' = ! at tY=0. 

The second of the above two equations consequently integrates to 

- (3/5)tH  =  (l/Pr>H' (27) 

and one consequently obtains the fourth—order nonlinear 
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differential .equation 

♦''' + (3/5)(1 + Pr)**''' + <l/5)t'*' + (9/25)Pr i^t ' 

- (3/25)Pr Hf)^ 

=0     (28) 

with the boundary conditions 

♦  =  0;      ♦' = !;      ♦•'=0;      atr4 = 0        (29a) 

♦ ' -► O     as  n ■+ «■ (29b) 

Once such a function ♦(1r») is found, the constant K can be 

determined from 

K i ♦' C (1/5) (♦')'^-(3/5)**' '-♦' ' 'D dY^ r        f I u e dy  =   K I 

Jo Jo 

•^o 

H*-')^   +   (1/2)(*')^D dy\ (30) 

The differential equation (28) can be integrated numerically, 

starting from 1^=0, given some choice ♦' ' ' (O) .  If ♦' ' ' (O) is 

systematically varied one eventually finds one such choice that 

leads to a solution that satisfies the upper boundary condition. 

The results of such a lengthy computation are tabulated in 

Table 2 for Pr = 7.0,  For small Yi  the results are consistent with 

the power series expressions 
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n        $        F        H G     , 

0.0 0.0000 1.0000 1.0049 -0.0000 
0.2 0.1989 .9842 .9400 -0.0406 
0.4 0.3917 .9396 .7736 -0.0847 
0.6 0.5288 ,8740 .5530 -0.1075 
0.8 0.6123 .7969 .3584 -0.1124 
1.0 0.6879 .7161 .2220 -0.1263 
1.2 0.7554 .6370 .1336 -0.1475 
1.4 0.8153 .5627 .0797 -0.1741 

. 1.6 0.8680 .4946 .0482 -0.2043 
1.8 0.9143 .4333 .0300 -0.2366 
2.0 0.9548 .3786 .0194 -0.2700 
2.2 0.9901 .3301 .0132 -0.3036 

- 2.4 1.0209 ,2874 .0092 -0.3366 
2.6 1.0477 .2499 .0067 -0.3687 
2.8 1.0710 .2171 .0049 -0.3995 
3.0 1.0912 .1884 .0036 -0.4287 
3.2 1.1087 .1633 .0027 -0.4562 
3.4 1.1239 .1414 .0020 -0.4820     -;. 
3.6 1.1370 .1224 .0015 -0.5059 
3.8 1.1484 .1059 .0011 -0.5281       ;j -- 
4.0 1.1583 .0915 .0008 -0.5485 
4.2 1.1668 .0791 .0006 -0.5672            ' 
4.4 1.1741 .0682 .0005 -0.5843 
4.6 1.1804 .0589 .0003 -0.5999 
4.8 1.1859 .0507 .0003 -0.6141 
5.0 1.1906 .0437 .0002 -0.6270 
5.2 1.1947 .0376 .0001 -0.6386 
5.4 1.1981 .0323 .0001 -0.)6491 
5.6 1.2011 .0278 .0001 -0.6585 
5.8 1.2037 .0238 .0001 -0.6670 
6.0 1.2059 .0204 .0000 -0.6746 
6.2 1.2078 .0175 .0000 -0.6814 
6.4 1.2094 .0149 .0000 -0,6875 

Table 2.     Tabulation of similarity solution for a buoyantly 

rising thermal plume.  Calculation is for a Prandtl 

number of 7.0.  The dimensionless quantity Y\ 

corresponds to horizontal distance across the plume 

relative to its center;  F corresponds to the profile 

of vertical velocity;  G corresponds to the profile 

of horizontal velocity (negative velues imply motion 

away from the center);  H corresponds to the temperature 

profile;  ♦(Y^) is the solution of the differential 

equation and is the integral of F(1rj). 
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♦  =  t^ - 0.1342 Ti?     +     0.0335 n^ (31a) 

F  = 1 - 0.4024Vi^  + 0.\h77yr? (31b) 

H  = 1.0049  -  1.6903lf^'^  +  1.7191Y^^ (31c) 

B  =  -0.2000K^  -  O.OBOSK^^  +  0.0470t)^ (31d) 

In the limit of large In the function ♦ approaches a constant 

value of ♦ =1.2173 and the approach is such that 

♦   -♦  ♦  - (5/3) (1.69a/t ) 
-(3/5)♦ W 

(32a) 

-(3/5)« W 
F -*■     1.698 e (32b) 

-(3/5) ♦ r> 
G -*■     -(3/5) ♦   +  (3/5) Cn + 5/(3* ) 31.698 e       * (32c) 

The temperature profile, according to Eqs. (27) and (32a), must 

asymptotically satisfy 

d<ln H>/d\i^  =  -(3/5)Pr ♦  - (5/3)(1.698/* ) e 
00 » 

(3/5)* V> «> 

so 

-(3/5)Pr*^Yi 
H  -►  D e **  exp 

-(3/5) ♦ Yt 
(5/3)Pr 1.698 ♦   e (33a) 
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and eventually 

-(3/5)Pr ♦ r\ 
H  -*  D e * <33b) 

A comparison of the expression (33a) with the numerical results 

yields D = 1.07x10  .  CThe asymptotic formula (33a) is 

probably more accurate than the Table 2 values for H(n) when y\ 

is greater than 2 because of the round-off errors incurred when 

Eq. (27) is used to calculate H(la).3 

For the line source model, the energy Q generated per unit 

length and per unit time (see Sec. Ill) is identified with 

reference to the thermal plume boundary layer equations (19) 

as being 

» 

Jo 

Q   =    2 PC  I u e dy (34a) 

2 PC K 
P 
r K I H F dn (34b) 

where the second expression follows from Eq. (24).  For a Prandtl 

number of 7.0 the integral appearing in this latter expression 

is computed to be 

40 

526  ' . - •      ■ (35) /H F dv^  =  O. 

o 

Consequently, one has (with Pr = 7.0) .^;,, ^, 
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this matching are that (1) the rate of heat transport (integral 

over y of uQ)    and (2) the rate of momentum transport (integral 

over y of u") be the same for both solutions at the point 

where the boundary layer separates from the cylinder.  Since the 

separation point is not known and since the cited integrals aire 

somewhat insensitive to its precise value, the numbers corresponding 

to jS = ir/2 (90°) are used in the cylinder boundary layer      > 

solution.  The z origin is taken at the center of the cylinder. 

The calculations discussed here are   carried out for a Prandtl 

number of 7.0.  Consequently, the integral expressions in Eqs. (16), 

with substitution from Eqs. (11) and with values of a (IT/2) and 

W(iT/2) taken from Table 1, yield 

f   "2     . ^  , 2 _.. ,„ .3/4 

J. 

4» 

u^ dy   =  0.0230 (v^'/R) (Br) ^■'"        " (38a) 

/ 
u e dy    =  0.1095 vO^^ (Gr)^''^ (38b) 

The integral on the right side of (24) is found to be 0.326, and 

since 0.1095/0.326 is 0.336, one obtains 

K  =  0.336 ve  (Gr)^''^ (39) 

Alternatively, since K is given in terms of Q by Eq. (36), this 

yields 

Q  =  0.219 uc e^ (Br)^"^^ (40) 
P c 
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The Nusselt number -far   natural convective heat transfer from 

the horizontal cylinder can be regarded as de-fined by the relation 

Nu  =  Q/e Kir (41) 

Consequently, with the Prandtl number taken to be 7.0, Eq. (40) 

yields the heat transfer relation 

Nu  =  0.49 (Gr)^''^  =  0.30 (Ra)^''^ (42) 

which is in order of magnitude agreement with the empirical relation 

Nu  =  0.525 (Ra)^''^ (43) 

commonly cited in the literature C121. 

The second matching criterion can be expressed 

0.0230(v^/R) (Br)^'''*  =  (gfiK) ^^^v^^^(-z^) "^^^ 

=  (.336/8)^^^(Br)^'''*(v^/R) (-z^/R)^^^ I F^ dn 1: 
so one has 

0.0230 (8/.336)^''^ 
(-Z /R)^^^   =     7  <44) o / » 

F  dn 
Jo 

The integral in the denominator here is 0.628, so one consequently 

obtains 

z   =  -0.173 R (45) 
o 
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The apparent origin point of the thermal plume is therefore 0.173 

radii below the center of the cylinder.  If one is interested in 

the character of the plume only for z greater than, say, 5 radii, 

the value of 2  can be approximated by O. 
o 

Again, it must be pointed out that the numerical values in 

the above equations are for a Prandtl number of 7.0. 

VII.  IRANSillQN IQ lURBULENCE 

A single buoyant plume such as is described by equations given 

in previous sections of this report should eventually become instable 

and then become turbulent. , 

The earliest data in this regard of which the present author 

is aware appears in a 1967 paper by Forstrom and Sparrow C13]. 

Their experiments were with a horizontal wire heated by an 

electrical current; the heat input Q per unit length and per 

unit time in such an experiment is easily measured by simply 

measuring the voltage drop across a segment of length d and 

also measuring the current through the wire; Q is then simply 

voltage drop times current divided by segment length d. 

Forstrom and Sparrow interpreted their data in terms of a 

horizontal line source model and used what they called a modified 

Brashof number, which turns out to be the same as the x-dependent 

Grashof number defined in the present report's Eq. (7).  Recall 

that X there corresponds to height above the line source. 

The onset of transition to turbulence is characterized by 

Q 
turbulent bursts and begins when (Gr)^ = 5:cl0 .  The plume appears 

9 ■ ■ ■ 
to be fully turbulent if (Br)  exceeds 5^10 . 
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The criteria just mentioned should also depend on the 

Prandtl number; Forstrom and Sparrow's experiments were carried 

out in air, for which Pr2:0.7, so the results are not necessarily 

applicable for water, for which Pr2:7.0.  Nevertheless, it may be 

of interest to see what these criteria, taken at face value, would 

imply for the NORDA experiments.  Using the numbers listed in 

Sec. Ill, one finds: 
g 

i)  Onset of turbulence C(Gr)   = 5^10 1: 
X 

X =  31 cm if Q = 3400 W/m 

X =  23 cm if Q = 8700 W/m 

ii)  Fully turbulent EKGr)   = 5^10 3: 
X 

X =  67 cm if Q = 3400 W/m 

X =  49 cm if Q = 8700 W/m 

A second paper which pertains to this question is that 

published in 1971 by Pera and Bebhart C14].  Their discussion 

uses a different definition C15] of a Brashof number, which 

we abbreviate here as <Br)p„ , the definition being such that 

gBx^(Ae> 

(jl/iD) 

with 

(AO)  = e(x,o) - e(x,«) 
X 

=  e(x,0) (47) 

representing the plume's nominal center temperature (relative to 

the ambient temperature) at height x above the line source. 

Given that the plume is on the borderline of being instable one 

can take the latter quantity to be as given by Eq. (18b), only 
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with X now denoting the vertical distance rather than z-z . 
_     Q . 

The function H is evaluated with its argument set to zero; the 

corresponding value for when Pr=7.0 is H(0) =1.0049 from  ■, 

Eq. (31c).  Consequently, with K given by (36), and with T(x) 

given by Eq.(23c), one has a reinterpretation of the Pera and 

Gebhart Brashof number as being (for a Prandtl number of 7.0) 

AX'S A/S 
(Gr)^^  =  (1.53)    H(0) C(Gr) 3 

PB X 

1.41 C(Br) 1^^^ (48) 

Most of Pera and Bebhart's computations and experimental 

results are for air, for which Pr = 0.7, but their Figs. 2, 3, 

and 4 indicate no radical dependence on Prandtl number in 

regard to stability criteria.  A rough inference is that if 

Gr  (air) is some critical value of a Brashof number for air, 

then the corresponding critical value Br  (water) is between 

1 and 10 times Br  (air), larger but no more than 10 times 

larger.  They report a "critical" Brashof number Gr   O'f 10.34 

for air, so it is a good conclusion that any plume in water 

must be intrinsically instable whenever Grp„ exceeds 103.4, or 

with reference to Eq. (48), whenever (Br)  exceeds 215.  This 
X 

is considerably smaller than Forstrom and Sparrox's value of 

5-: 10 , but one could possibly explain this with the supposition 

that a very small instability triggered at a critical value of x 

may not be noticeable until the plume has risen some additional 

distance.  Recall that (Gr)  is proportional to x"^, so a 10 -fold 

increase in (Gr)  only corresponds to a 100-fold increase in x. 
X 

For the planning of experiments, Forstrom and Sparrow's number 

should be the more useful. 
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VIII.  lUBBULENI PLUMES 

A plume rising from a line source must eventually become 

fully turbulent.  In such a height regime the mean flow and 

mean temperature are more strongly affected by Reynolds' 

stresses than viscous stresses and more strongly affected by 

heat transport by turbulent diffusion than direct thermal 

conduction.  Consequently, the plume boundary layer equations 

(19) must be modified to C16] 

3u/&z  +  »v/»y  =  0 (49a) 

u3u/&z  +  v»u/»y  =  (l/jo)&T/3y  +  gB 9 (49b) 

uae/»2  +  v»e/»y  =  (l/jOC )ax/»y (49c) 

where here the quantities u, v, ©, correspond to time averaged 

quantities.  Apart from a multiplicative factor of p, the 

Reynolds' stress T is presumed to depend only on height z 

and on the local profile of u versus y at that height.  Similarly, 

apart from a multiplicative factor of pc   , the mean thermal heat 

flux X (which is associated with turbulent convection) is presumed 

to depend only on height z and on the local profiles of u and 6 with 

the transverse coordinate y.  It is still so that the quantity 

D  =   joc  / u9 dy (50) 
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must be independent of z and is identifiable as the net 

heat per unit source length and per unit time that is being carried 

upward by the plume. 

A plausible assumption that can be made concerning the solution 

of Eqs. (49) is that at sufficiently large heights the mean plume 

profile must eventually attain a self similar form, such as is   * 

described by Eqs. (18) , with L   being some function of z.   .   ■•■ 

A related assumption is that the shear stress T must scale    ' 

with /)u^, such that r/fiUT'   is a function only of y/L .       c. - 

Existence of a solution having such properties requires C173 that 

U be independent of z, that OL  be a function only of y/L , and 

dL /dz be independent of z.  Hence with a suitable choice of the z- 
y 

origin, one can set L =z/a, where a is any convenient dimensionless 

constant. The conservation of mass equation (49a) is automatically 

satisfied if one introduces a function tdr^), where 

y\     =     ay/z . J:     (51a) 

u(y,z)  = Lq&Q/jxi   l^'^^Kt'  =  v^^K*' (51b) 

v(y,z)  =  CgeQ/pc l^'^^a'^KC ♦' ^ - ♦! (51c) 

Here K and a Are  dimensionless constants that can.be selected to 

make the analysis less cumbersome;  the quantity v   is as defined 

in Eq. (6a). 

When the similitude principle is applied to the other two 

boundary layer equations one discovers that 
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iOCgeO/pc :   (K /a) A (52a) 
P T 

2/3  2 2 
e  = Lg^Q/fx:   ]   (K /gBz) A^  =  (e^^L^^/z)K A^      <52b) 

X  =  QK^a ^ A^ (52c) 

where A , A^, and A„ are dimension!ess -functions of 'n;  the 

quantities L ^ and 6 ^ are as defined in Eqs. (5a) and (5c). 
^ ch      ch 

Insertion of the above expressions into the boundary layer 

equations (49b) and (49c) consequently leads to the two ordinary 

differential equations 

- ♦ ♦''  =  A'  +  A^ (53a) 
T      6 

- C* A-]'  =  A' (53b) 
o X 

the latter of which immediately integrates to 

- ♦ AQ  =  A^ <53b') 

because symmetry imposes the boundary conditions +(0) = 0 and 

A (O) =0.  A comparable insertion into Eq. (50) yields the relation 

(K'^/a)   I ♦' A„ dv^ (54) 

which can be used for the evaluation of the constant K, given some 

choice for the value of ♦'(O). 

The Prandtl model of turbulence requires that 

34 



cV ♦"!♦' (55a) 

A^ =     c^a^A^lt" I (55b) 

where c is a dimensionless constant that must be determined from 

experiment.   CA determination described further below yields 

c = 0.065.3  For a hot rising plume, given positive y, ♦'' and A' 

should be negative. -• 

The most convenient choice for the parameter a is such 

"^   3 that c'^a  = 1/2.  Such a choice along with the identifications 

in Eqs. (55) allows one to reexpress Eqs. (53) in the form 

(for positive Y>) 

♦ ' ' ♦ - ♦♦''  =  A, (56a) 

♦ ' ' A ' 2*A^  =  O (56b) 

Boundary conditions at YY=0 are that both ♦ and ♦'' are 

zero.  The quantity ♦' should be finite at Y¥=0.  Biven the 

latitude in the selection of K, one is free to choose the solution 

to be such that A (0) =1.  Such conditions cause the solution 

of Eqs. (56) to be such that, for small positive rj. 

♦  =  CY^ - (4/15) •2Yi^''^ + (l/18)Cn^ 

(57a) 

A_  =  1 - (272/3) CTr^^^'^ + :(2/9)C^ + (8/45) In'^ 
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where C is a constant that remains to be determined. 

The quantities u and 9 must vanish at large distances from 

the center of the plume;  a study of Eqs. (56) indicates that this 

can be achieved if ♦' and ♦'' simultaneously vanish at some 

point.  If such a point is denoted by tv , then the differential 

equations and the requisite continuity conditions are identically 

satisfied beyond Yi.    with ♦ set to a constant value of ♦(Vi ). 

There is, however, only one such value of the constant C for 

which this is possible; Schmidt's calculations C163 yield 

C  =  1.139B (5Ba) 

n   2:  2.0 (58b) 

♦ (Y^l_)  =  0.9682 (5Bc) 

The plume therefore stops abruptly at 1f¥=1rj  and has a finite 

width.  A brief table of values extracted from Schmidt's paper is 

given in Table 3. 

The experiments of Rouse, Yih, and Humphreys C17] yield 

u(0,z)  =  1.80 {Q&Q/Jx:   )^^^ (59) 

so a comparison with Eqs. (51b), (54), and (57a) requires 

K  =  1.80/C  =  1.80/1.1398  =  1.58 (60a) 

\ 

1 a  =  2(1.80/1.1398)^  | ♦' (^^dt^n     =  4.93      (60b) 

c = (l/2a"^)^''^  =  0.065 (60c) 
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e 

0.0 

O. 1 

0.2 

0.3 

0.4 

0.5 

0. 6 

0.7 

0.8 

0.9 

1.0 

1. 1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

Table 3. 

0.00000 

O.1128 

0.2215 

0.3154 

O.41995 

0.507 

0.5866 

0.65775 

0.7204 

0.7749 

0.8205 

0.8604 

0.8915 

0.9166 

0.9356 

0.9495 

0.9584 

0.9639 

0.9667 

0.9678 

0.9682 

1.1398- 

1.1202 

1.0582 

O.9B88 

0,91698 

0.8369" 

0.7607 

0.66914 

0.58575 

0.5032 

0.4246 

0.3525 

0.2812 

0.2^85 

O.1622 

O.1139 

0.0733 

0.0415 

0.017B 

0.0048 

O.OOOO 

1.00000 

0.9665 

0.90666 

0.8311 

0.75703 

O.67354 

0.59068 

0.51964 

0.4324 

0.387 

0.294 

0.2365 

O.1818 

O.1364 

0.0983 

0.0678 

0.0496 

0.0233 

0. 009 

0.0025 

0.0000 

Tabulation o-f dimensionless boundary layer parameters 

for a turbulent plume, buoyantly rising under the 

influence of gravity.  Calculation applies to two- 

dimensional plume, such as would be generated by a 

line source of heat, and is for a Prandtl number of 

7.0.  The parameter Y^  is ay/z and is proportional 

to transverse distance y;  ♦ is the solution of an 

ordinary differential equation, defined such that 

♦' corresponds to vertical flow velocity;  A 

corresponds to temperature. 
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where the numerical integration in Eq. (60b) is effected using the 

values from Table 3. 

Since the temperature deviation drops to 1/2 its maximum 

value at v^ 2: 0.7, the plume width can be taken to be (2) (0.7) a~^z, 

or with the numbers derived above, 0.28 times the height z above 

the heat element.  Thus at a representative height of 2 m, the 

plume width should be roughly 0.57 m.  The heuristic mixing 

length theory analyses that lead to Eqs. (55) suggest that the 

correlation length ft   that appears in Sec. I of the present 

report should be roughly cz, or 0.06 times the height z above 

the heating element (ft= 12 cm when z = 2 m) . 

Given that Q is 8700 m/s, along with the numbers cited in Sec. 

Ill, one finds that the above analysis leads to 

^max  =  1-5/^ <61> 

for the temperature in the center of the plume (in degrees centigrade 

relative to the nominal temperature of the water when z is measured 

in metres).  Since the speed of sound in water increases by roughly 

4.0 m/s when the temperature increases by 1 °C, the ratio v'^ 

of the mean squared deviation of the sound speed from its average 

value to the square of the average sound speed should be roughly of 

the order of 

V   s  (4.0/1500)'^e   ^ 
max 

i   (1.6x10 ^)/z^ (62) 

with all numerical values understood to be reckoned in MKS units. 

Biven that ft i O.06z, one consequently has 
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V *  2f  (iO ^)/z <63) 

IX.  PLUME-PLUME INIERAQIIONS 

One of the features that shows up in interferometer photographs 

C183 of multiple plumes from parallel line sources lying in the same 

horizontal plane is that the separate plumes tend to draw themselves 

together.  The tentative explanation of this phenomena is that 

the upward moving fluid in any given plume drifts sidewards because 

of the asymptotic horizontal velocity of the other plumes.  The 

bending can be worked out starting with this premise and tracing 

the trajectory of a fluid particle nominally in the center of the 

plume, according to the equation 

V due to other plumes 

dy/dz  =   u~due~tD~that~prume 

Using the equations developed in Section V of the present 

report, one has in the case of two plumes 

v"^^^  (3/5) (1.2173) 

dy/dz  =   """"175":    73/5"" 
(gPK)      (z-z ) o 

(65) 

For the horizontal isothermal cylinder model this gives Csee 

Eqs. (39) and (45)3 

1- 3^ -3/5 
dy/dz  =    T7i Cz/R + 0.173D (66) 

(6r) 

Thus, in the limit of large z, one has 

7/5 
3.44 (z/R) i 

y ^     T74 ^ ^^^^ 
(Gr) 

for the sideways drift y of one of the plumes.  With z/R = 10 
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and Gr = 3000, for example, one would have y/R = 1.2, while for 

z/R = lOO one would have y/R = 3, and for z/R = 1000 one would 

have y/R =7. 

X.  SWAYING OF PLUMES  _ —  ^ 

A curious feature of the thermistor data from e:<periment5 in 

the NQRDA water tank facility is that there are often relatively 

long "quiet" periods in which the temperature does not fluctuate 

at all at the measurement point.  Although there is no clear—cut 

unambiguous explanation for this phenomenon, a possibility suggested 

by a study of the recent archival literature on natural convection 

is the "swaying of thermal plumes." 

The "swaying" could cause the "quiet" periods if the tur— 

bulent plume arising from the heating element were confined to a 

relatively narrow region of horizontal extent.  Part of the time 

the sensor may lie in the plume; part of the time the plume may 

have swayed off to one side of the sensor; part of the time it 

may have swayed off to the other side. 

Present understanding of the physics of plume swaying is 

unfortunately relatively meagre, but something may perhaps be 

learned from a careful study of previous literature on this sub- 

ject.  With such a purpose, the relevant portions of the prin- 

cipal papers are   paraphrased and discussed below. 

A.  Forstrom and Sparrow (1967) 

This early paper C13] summarizes experiments on the buoyant 

plume above a heated horizontal wire.  The experiments were 

done in air with a wire 0.040 inch in diameter.  In discussing 
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the design aspects o-f their experiments, the authors state that 

"prior experience suggests that external free convection flows   ?, 

are readily affected by fluid motions and temperature fluctua- 

tions in the surroundings", so they were careful to use an iso- 

lated, windowless room, free of drafts.  Nevertheless, they 

found that in any such room, the measured temperatures varied 

appreciably with time.  Subsequent visualization of the flow 

field with a Schlieren system revealed that the plume was 

swaying to and fro in a plane perpendicular to the axis of the 

wire.  The authors concluded from this that even in the ideal 

rooms available, there were sufficient air currents to affect 

the plume.  To eliminate such spurious air currents, they sur- 

rounded the plume with an isolation enclosure.  This enclo- 

sure was a rectangular box 44-in high with 32 x 24—in horizontal 

dimensions,  the 32-in length being parallel to the heated wire. 

The wire itself was centrally located 12-in above the bottom of 

the enclosure.  Individual experiment runs were distinguished 

by the amount of heat Q dissipated per unit time and per unit 

length of wire.  This was measured by determination of the time 

average of the product of voltage drop across the wire times 

current through the wire, divided by length of the wire. 

The temperature above the heated wire was measured by a 

thermocouple.  The heating rate Q ranged from 0.26 to 5.2 W/ft. 

The temperature field was measured at elevations ranging from 

1/4-in to 15-in above the center of the heated wire.  The authors 

enclosure appreciably reduced the swaying of the plume, but some 

swaying nevertheless persisted.  These swaying motions were 

regarded as a characteristic of natural convection plumes.  The 
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flow was always fully laminar for all operating conditions at 

elevations up to 6 in above the wire.  At higher elevations, 

depending on heating rate, the flow would sometimes be turbulent. 

The swaying of the plume was manifested by a periodic oscillation 

in the temperature at a fixed point above the wire where the flow 

was laminar.  The period was of the order of 1 minute.  Turbulence 

was distinguished from laminar flow by the fact that the temperature 

fluctuations were erratic rather than smoothly periodic. 

The authors do not give much information regarding the tur- 

bulent bursts that they report as characterizing height regimes 

where the flow starts to become turbulent.  They state that 

measurements of temperature fluctuations versus time during such 

circumstances could not be performed because the available in- 

strumentation did not possess the requisite rapid response 

characteristics, but the amplitudes of the fluctuations were 

much higher than those of the temperature fluctuations in the 

laminar regime.  There is no mention of long quiet periods 

between turbulent bursts; instead there are remarks to the effect 

that the plume becomes wider when the flow becomes turbulent. 

B.  Aiba and Seki (1976) 

This C191 was the first systematic study of the swaying 

motion of plumes.  The heating elements were strips of stainless 

steel foil, each sample being 40 cm long, the width being either 

1, 2, or 3 cm.  Like Forstrom and Sparrow, these authors also 

measured the rate D of heat supplied per unit length of strip. 

Temperature was measured at a point 3 to 4 cm vertically above the 

center of the strip.  The horizontal heating strip was immersed 
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in transformer oil or spindle oil (the authors vaguely state that 

the Prandtl number varied from 80 to 160 for their experiments). 

The authors' primary discovery was the manner in which the 

plume swaying frequency varied with the height H of the free 

surface of the oil above the heating strip.  Their data is fairly 

well explained by the empirical formula 

f d-^/n  =  1.37x10  ^(Gr d/H)     . (68) 

where f is the swaying frequency of the plume, d is the width of 

the heating strip, v is the kinematic viscosity, H is distance 

of free surface above the heating strip, and Gr is a Grashof 

number.  The latter is not explicitly defined in the paper but 

is here evidently 

(Gr)_.  =  (d/v)^ gBQ//x: (69) 
d p    ■ 

which is just the same as that defined in Eq. (7), only with x 

replaced by d.  If one plugs (69) into (68) one finds that the 

swaying frequency f is actually independent of the heating foil's 

width d, which makes sense because H is so much larger than d, 

so the swaying frequency is about the same as if the source were 

a wire of indeterminate small diameter.  What is more inter— 

esting about the empirical results is that the swaying frequency 

varies as the inverse square root of the fluid depth H.  The 

deeper the fluid, the longer the period of the plume swaying. 

It may be somewhat risky, however, to assume that these results 

apply to the NORDA experiments, because the Prandtl number of 
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water is only 5 to 107.  of that of the fluids used by Aiba and 

Seki.  The authors suggest (but give nothing in the way of 

theory) that the plume swaying might be a "self-excited oscil- 

lation" related to a periodical variation of local heat transfer 

on the surface. 

C.  Eichhorn and Vedhanayagam (1982) 

This C20] is a combined experimental and theoretical study 

of plume swaying in a rectangular tank partially filled with     >, 

water.  As in the experiments of Forstrom and Sparrow, these 

experiments used a long cylindrical wire carrying electric current 

to serve as a line source of heat (Q watts per unit length of wire); 

the new feature of the experiments was that the lateral extent 

of the tank (distance between plexiglas endplates) was varied in 

addition to O and the depth h of the wire below the water surface. 

This lateral extent L corresponded to the line source length. 

The flow visualization techniques in this paper were 

relatively novel.  The outer steel sheath of the heater element 

acted as a dye-producing element for thymol-blue indicator which 

made the thermal plume visible to the eye and to the camera. 

Boodyear Pliolite VT particles were first used to visualize the 

flow field; but the latter experiments used ground-up mother of 

pearl as it allowed the authors to visualize both the plume and 

the ambient motion and to determine the swaying frequency with a 

stop watch.  They could illuminate either horizontal or vertical 

thin cross sections of the flow field with collimated light from 

a slide projector. 

The photographs of horizontal cross sections of the plume 

(such as would be seen looking down from above with only the por 
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tian of the plume at a given set height visible) showed a wavy 

appearance reminiscent of the vibration modes of a vibrating 

string with free ends. (My inspection of the photographs in the 

paper doesn't lead to any simple boundary condition at the 

end plates.  Neither the plume displacement nor the plume slope 

seem to vanish.  Mhat may possibly be the case is that the ave- 

rage plume displacement from the line directly above the source 

averages out to be zero.) 

When the plume is swaying back and forth at constant fre- 

quency the plume shape tends to remain fixed - just as the 

shape of a vibrating string remains fixed when the string is 

vibrating in a given natural mode.  Plume shapes are distin- 

guished by the number of nodes.  The authors state that "in 

steady state oscillation, an integral number of nodes must exist 

between the end plates, and the end plates must coincide with an 

anti-node, to satisfy continuity in the ambient fluid."  Their 

plume visualization studies indicate that the number of such 

3  2 
nodes is a function only of the parameter  gh /v , where h is the 

immersion depth of the heat source.  Interestingly, the number of 

nodes is independent of the rate Q of heat added per unit length 

of line source.  The more shallow the immersion, the greater the 

number of nodes.  The change from 2 to 3 nodes occurs when the 

parameter gh^/v'" decreases from above to below 1650;  the change 

from 3 to 4 nodes occurs when this parameter decreases from above 

to below 1350;  the change from 9 to 10 nodes occurs when the 

parameter is of the order of 660 to 690. 

For the NORDA experiments, the length h is of the order of 
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-6  2 
5 m, while v is of the order of 1.004x10   m /s, so 

g h^/yf^     a 4.2x10*^ <70> 

The exceptionally large value of this number compared to the 

values cited in the preceding paragraph would seem to imply that 

there should only be 2 nodes in any swaying plume that may exist 

in the NORDA experiments,  (Apparently, two is the minimum number 

of nodes that one can have, in order that "the end plates coincide 

with anti-nodes.") 

With a given observed plume shape function one can associate 

a wavelength A.  This wavelength is twice the distance between 

nodes; the line source length L should be an integral number of 

half wavelengths.  With such a definition, the authors present 

a relatively crude theory that states among other things that 

the swaying frequency depends, among other things, on the wave- 

length A.  In particular, they predict, by using a novel and 

somewhat unorthodox interpretation of Rayleigh's principle, that 

the swaying frequency is given by 

, 2, , l/3,.r^_,0.3 „ -0.36 , .3, 2,-11/30 
f =  (g /v)   (BQ/K)    Pr      (gh /v ) 

times (function of h/A) 

(71) 

where they offer two alternate expressions for the function of 

h/A that appears here.  These are 

function of h/A  =   0.7247 
h/A 

1 + (A/2irh) 

1/: 

(72a) 
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and ■"."'■■'"'' 

-il/2 

function   of   h/X     =        0.4678 
h/A 

1 + <3/2)(A/2nh) 
(72b) 

In the above formulas the various symbols have their usual mea- 

nings:  K is the thermal conductivity, Pr is the Prandtl number 

(viscosity times specific heat divided by thermal conductivity), 

h is depth of line source below free surface, v is kinematic 

viscosity, 6 is coefficient of thermal expansion. 

The agreement of theory and experiment is pretty good when 

the first version to the function of h/X is used in Eq. (71) *. 

Regardless of whether or not the theory is correct, however, it 

does not begin to purport to explain the variation of the number 

3  2 
of nodes with the parameter gh /v . 

Applying the above formulas to the NORDA experiments is 

intrinsically questionable, but a rough interpretation might take 

A = 10 m, h = 3.5 m, Q = 8700 W/m.  The function given by 

Eq. (72a) is then 0.39; this in turn when inserted into Eq. (71) 

—4 
yields a frequency of 1.35x10   Hz, which corresponds to a 

period of 2 hours. 

D.  Urakawa, Morioka, and Kiyota (1983) 

This somewhat parochial paper t213 refers only to previous 

Japanese work.  The authors apparently were unaware of the work 

discussed above by Eichhorn and Vedhanayagam, but the general 

experimental setup is similar to that of those authors.  Urakawa 

and cDworkers used spindle oil rather than water because spindle 

oil has a much higher viscosity than water, and this feature evi- 

dently causes the swaying period to be much longer.  There was 
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a horizontal line source a distance H below the free surface; 

the length L of the line source was varied with movable end 

plates (partition plates within a larger tank). 

The heat rate Q per unit length of line source was measured 

and the time variation of the temperature with a thermocouple at 

some unspecified point above the heat source.  The plume vibra- 

tions were visualized by shining light up from below the bottom 

of the tank.  Between the fluorescent light source and the trans- 

parent bottom of the tank was a milk white plate with many paral- 

lel black lines painted on it.  The black line below the plume 

would have an apparent displaced position because of the refrac- 

tion of the light in passing through the heated fluid with a 

smaller density and different index of refraction.  The swaying 

motion of the plume was therefore displayed in the swaying of 

the image of the black line. 

One general observation of Urakawa et al. that conflicts 

with the results reported by Eichhorn and Vedhanayagam is that 

the position of the nodes move and the ripples in the swaying 

plume meander.  The plume motion is not generally periodic. 

However, it was evidently always possible to associate a definite 

wavelength with the ripple in the plume; the nodes might mean- 

der but the distance between them stayed fixed.  This wavelength 

depended on Q and the immersion depth h, but was apparently inde- 

pendent of the line source length L (distance between the movable 

partitions).  They found that they could stop the meandering if 

they adjusted L such that it was an integral number of half wave- 

lengths. 
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Another curious feature suggested by these experiments is 

that the line formed by the intersection of the plume with a 

vertical plane perpendicular to the line source has an intri- 

cate motion.  Such lines were visualized by putting aluminum 

powder in the oil. Short term exposures of photos taken end on 

of the tank revealed the streak lines of the paths of the 

powder particles.  The longer streaklines evidently marked where 

the flow velocity was highest and this was apparently identified 

as the position of the plume.  A succession of such photographs 

then gave the time evolution of a given vertical slice of the 

plume.  The authors' sketches derived in this manner show a line 

moving in a very erratic manner, sometimes bending downwards, 

then bending back upwards, sometimes actually becoming discon- 

nected at an intermediate point between the line source and 

the free surface.  On the two sides of this erratically moving 

plume were many <say, four to six) vortices distinguished by 

closed streak lines, these vortices having no discernible 

regularity. 

The authors' measurements apparently indicated that there was 

more than one possibility for the wavelength A, given a fixed choice 

for the immersion depth h and the heating rate Q.  The swaying period 

can be regarded as a function of A, h, and Q, with the wavelength 

in turn being one of a relatively small number of functions of 

h and Q.  For fixed Q and h, the period increases with the wavelength. 

For fixed Q, the wavelength increases with the water depth and, 

for fixed depth and wavelength, the period varies as the reciprocal 

of the cube root of the heat rate D. 

The authors do not give anything in the way of theory to explain 
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their experimental results.  Also, an extrapolation to water is 

hampered because the authors do not give their results in terms o-f 

dimensionless groups of parameters.  The paper is stimulating but 

not rigorously written. 

One possible explanation o-f the swaying of plumes in the 

NORDA water tank is that the the plume is being moved bodily by 

one of the sloshing modes (gravity induced oscillations marked by 

wave motion on the surface) of the tank as a whole.  It is a 

straightforward exercise in fluid mechanics to derive an 

expression for the natural sloshing frequencies of a rectangular 

tank with a free surface.  The general result is somewhat 

cumbersome, so it is omitted here.  The pertinent prediction 

is that the lowest natural sloshing frequency is of the order of 

-1     1/2 
(2ir)  (g/H)   , where H is a characteristic dimension for the tank. 

Typically, this would correspond to periods of less than 20 s, 

although longer intervals of quiet are observed in the NDRDA 

facility. 

XI.  CONCLUDINB REMARKS 

Turbulent natural convection, like all other aspects of turbulence, is 

a subject that is inperfectly understood. Nevertheless, it is still possible 

to make qualitative and even quantitative, although imprecise, predictions 

relative to experiments in the NORDA high-frequency scattering facility. 

Given the many simplifying assunptions in the analysis presented here, it 

is encouraging that the predicted rms tenperature fluctuations in Sect. VIII 

are in rough order of magnitude agreement with Posey's oral statement [3] 

that the measured values were of the order of 0.1 C.  Consequently, 
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it is a reasonable conjecture that the analysis in that Section may be 

a useful guide as to the dependence o£ the turbulent field on the 

externally controllable experimental parameters. In particular, one may 

note the dependence on Q (to the 2/3-rds power) in Eq. C52b). The present 

analysis suggests that the experimental configuration most recently 

reported [3] is just on the borderline of displaying Wenzel's [5] 

saturation phenomenon. To increase the strength of the turbulence one 

can either increase the nimiber of heating elements or the voltage 

drop across the heating array. 
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